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ACOUSTIC WAVE INTERACTION WITH BODIES COVERED 
BY A THIN COMPRESSIBLE LAYER* 

L.E. PEKUBOVSKII, V.B. POBUCSNIKOV, Iu. A. SOZONENKO 

The problem of acoustic wave interaction with rigid bodies on whose surface 
there is a thin compressible layer is formulated. The motion of the 
material is assumed to be quasi-two-dimensional in the layer, which results 
in a problem with special boundary condition , which generalizes the problem 
of acoustic wave diffraction by a rigid body and a cavity. The problem 
of plane acoustic wave diffraction by a sphere covered with a thin com- 
pressible layer is solved. 

1. Formulation of the Problem. Let curvilinear orthogonal coordinates in space 
define the radius-vector of the point r ($71, PI, PI). A thin layer of an ideal compressible 
fluid of variable thickness, whose outer surface is r ==r (ql,ql,a +h) where h is a function of 

qlr q1 and time t, is attached to the surface of the rigid body described by the parametric 
equation r = c (Qzr Qa, a), where a is a constant. The space outside the body and the compres- 
sible layer is filled with an ideal fluid with physical characteristics different from the 
characteristics of the layer material on the body. The reflection of a pressure wave from 
the body is investigated later. The problem under consideration arises when studying the 
diffraction by bodies with thin damping coatings that are in water when there are gasbubbles 
on their surface, and in other cases. 

In general, when a pressure wave acts on a body covered by a compressible layer, complex 
three-dimensional fluid flow occurs in the layer. Because of the thinness of the layer, it 
is natural to try to reduce the problem of the flow in alayertoaquasi-two-dimensional flow 
over a surface r = r (ql,qa, 4) /l/. Let us formulate the constraints on the conditions of the 
problemunderwhich this canbedone successfully. 
Lamg parameters H, = 1 &/8ql 1 and KS 

First,becauseofthethinnessofthelayer, the 
- 1 hf8q,I can be assumed to beindependentofthecoordinate 

qs for a<q,<a+h. It can be shown that this assumption will be satisfied with suffic- 
ient accuracy, when appropriate derivatives of r(ql, q2;qs) exist, if the following inequalities 
are satisfied 

(1.1) 

To simplify the calculations, the coordinate qs is identified with the arc-length of 
the appropriate coordinate line, i.e., it is assumed that Ha = ail@3 I 1, as always 
be by an selection the coordinate system. 

We further assume the pressure p the layer and the density p are independ- 
ent of the coordinate Qs* Introducing this assumption, we will neglect the waves in the 
direction of the normal to the surface r = r (glr Pa, 4). For the one-dimensional case, the 
validity of this assumption of proved in /l/ in an acoustic formulation for a small value of 
the ratio between the acoustic impedance of the layer material and the acoustic impedance of 
the surrounding fluid. Moreover, it is assumed, 
and in the surrounding fluid are barotropic. 

for simplicity, that the flows in the layer 

Let 4, us, Ua be components of the fluid velocity vector in the layer. It is assumed 
that the components c'~ and VI depend slightly on the coordinate qr, and we also consider 
their mean values 

s 

h 

(Vi> - + Vi dq, (is 1,2) 
0 

*Prikl.~4atem.Mekhan. ,47,5,823-831,1983 



664 

regarding which we make the assumptions that 

<v*'> - <u1>* (i = 1, 21, <w3 = <h>W (1.2) 

which are natural for slowly varying functions. 
The assumptions regarding the functions p, p, cl, UScan evidently be satisfied only for a 

fairly smooth change in the layer thickness over the body surface, i.e., when ?3h/i?q, and 8h/aq, 
are small. 

We will eliminate the velocity vector component v8 from the three-dimensional equations 
of fluid motion in the layer by taking account of the boundary conditions for qs = a and a+h. 

On the surface of the body, we have the usual boundary condition 

VQ -0 (1.3) 
for q*=a. 

From the condition that the fluid should not penetrate through the contact surface we 
obtain on the outer surface of the compressible layer qs =a +h 

ua-g+*++~~g (1.4) 

Writing the equations of fluid motion in curvilinear orthogonal coordinates /2/ in div- 
ergent form, we obtain 

-&(&Htp)$_ & w1m++ @udfl)+-&P~&l~*~-O (1.5) 

-&-whwl) -I- &Ph* +P)m+&(pwa~1) + -&hwdw*)- (pv? + P)% - PwJr 3 

(the equation of motion is written down only in projections on the P1 axis). Integrating 
(1.5) with respect to the variable qs between Pll = a and qS =a + h with the above assumptions 
and taking the boundary conditions (1.3) and (1.4) into account, we obtain the equations of 
quasi-two-dimensional flow in a layer 

&HI-g 
a 

(~)+~(~(~I:,H,)+-_(~(u~!H~)-O 
a9, @¶ 

(1.6) 

HdZ&(kpW + ~(WWtl,) +&(hp WI) (vi) HI) +H&+ - 4CW' $$- hp<U(vz) 2 

(the equation of motion in projections on the qs axis is obtained from the second equation in 
(1.6) by interchanging the subscripts 1 and 2). 

t?ote that (1.6) for the one-dimensional case will naturally agree with the equations of 
quasi-one-dimensional gas flow in a tube of variable section /3/. 

We will use the equations obtained as boundary conditions to solve problems ofdiffraction 
by the body under consideration. Because of the thinness of the layer covering the body, the 
boundary conditions refer to the surface r = r (a, ql, a). 

The same curvilinear coordinates are used in the outer fluid flow as when deriving (1.6). 
We will assume the pressures in the outer fluid flow on the surface ? = r (ql, qa, a) and the 
layer covering the body to be equal in order to obtain a closed system of boundary relations. 
Moreover, the boundary condition (1.4) should be satisfied on the surface r =r (a, q2, a) in the 
outer flow, but should be written for the velocity in the outer fluid flow (the velocities in 
the layer and in the outer flow are not the same). 

It can be seen that the set of boundary relations obtained is equivalent to one boundary 
condition connecting the outer flow parameters and their derivatives on the boundary r = r (ql, 
qal a).. We will write this boundary condition in explicit form only in the acoustic approx- 
imation. After linearizing the boundary conditions,we have on the surface T = r(q,, q%, a) 

llJ = ahlat (1.7) 

Ifdft ( 
1 ah 

xx + pNex yg Lap)+ -& (W HI) + & (W HI) = 0 

a (~0 a ‘W 
-yjyy$-+ yg- r= - -.&g*, h,=h(q1,qa,O) 

Theconstants p*,c* are the density of the material and the speed of sound, respectively. 
We will attach the linearized Euler equation for the outer fluid flow in projections on 

the q3 axis to system (1.7) (pO is the fluid density in the outer flow) 

av, -I 1 ap --- 
al R% 

(1.8) 

Eliminating the unknowns h,(v,>,(v,> from (1.7) and (l.B), we obtain a boundary condition 

for the pressure on the surface r = r(q,, qlV a) 

@P 
-- = -&- [&(i$J + &(%a1 

PA* ap 
F- h&l h 

(1.9) 

Relation (1.9) is a boundary condition for the wave equation 
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(1.10) 

For c* <co the following condition can be used together with (1.9) /l/: 

The constant (P*~*~)/(h,p,) characterizes the compressibility of the damping layer covering 
the body under consideration, and has the dimensions of acceleration. Note that the same 
condition is obtained on a free fluid surface subjected to the force of gravity/2/. 

As (P+c,*)/(h,P,) +oo. (the quantity c1 is bounded), the condition 3plaq5 = 0 is obtained 
on a rigid body from (1.9), and as (p*~*~)/(h,p,) +O (c* -0) the condition on an absolutely soft 
body with a given pressure on its boundary is obtained. 

2. Diffraction by a Sphere. In a space filled with a fluid at rest with initial 
pressure p0 and density PO? suppose there is a rigid fixed sphere of radius a with centre 
atthe origin of a system of spherical coordinates r, 9, cp (5 = r sin (B c0S 9, y - r sin cp sin 9, z = 

7 00s cp), covered by a damping layer of initial thickness h,. It can be shown that the 
condition &<a must be imposed to satisfy the inequalities (1.1). Consequently, as above, 
we refer the boundary condition on the layer-fluid contact surface to the sphere r-a. 

From infinity, let a plane acoustic wave of pressure pi, whose front is perpendicular 
to the z axis and reaches the sphere r=a attbetime t=O, impinge on the sphere 

(2.1) 

where pm is the pressure drop at the front 0, is a constant with the dimensions of time, 
characterizing the wave duration, and CO is the speed of sound in the fluid. 

In the axisymmetric problem under consideration, the resultant pressure field P (r, cp, 4 
is described by wave equation (1.101, where 

P = Pi? t < 0 (2.2) 

In the spherical coordinate system, the boundary condition (1.9) on the surface r = a 
has the form 

(2.3) 

Representing the total pressure p in the form 

P = Ps +Pf (2.4) 

where ps is a perturbation which the sphere induces in the impinging wave pressure field, 
and introducing the dimensionless quantities 

we obtain the following set of equations for the dimensionless pressure p, from relations 
(1.10),(2.1)-(2.3) (we omit the bar above the dimensionless quantities throughout) 

(2.5) 

pa = 0, t & 0 

Pi = exp I-6 (r cos rp -1+t)lq(rcmcp-I++) 

Note that the derivative 8% (pi + p*yat* in the first boundary condition (2.6) is elim- 
inated by using (2.5). Applying a Laplace transformint to (2.5) and (2.6), we obtain 

(2.7) 

(2.8) 

-.?.g- (&_ $) api* 
7 - (I- 9) [qg +ctgcpv , r--l 1 
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Pr* - 0, r-co; pi*= exp[-S(i-rcoSun,Ojj 
s-t* 

Here Res>O in (2.7) and (2.8) since pi = pa = 0 for t < 1 -rcos(p. If the solution 
of (2.7) is sought in the form of a series in Legendre polynomials, then, taking account of 
the second condition in (2.8), we find 

(2.9) 

Bere Ktil,(z) is the modified Bessel function of the third kind, and P,(a) is theLegendre 
polynomial. 

The incident wave is represented in the form 

where I,,+y, (z) is the modified Bessel function of the first kind. 
To determine B, we use the boundary condition. Then by using (2.9) and (2.10), we 

finally obtain the following expression for B, from the first condition in (2.8): 

(2.10) 

(2.11) 

a, = sp + v*n (n + 1) 

The expression p*(i,cp,s) for the transform of the pressure on the sphere surface can be 
represented in the form 

(2.12) 

By passing to the limit as y -0, 00 in (2.12) we obtain the well-known solution of 
acoustic-wave diffraction problems by, respectively, an absolutely rigid sphere, and an absol- 
utely soft sphere @ = 0 for r = 1) /4/. 

When the parameter y has finite values it is convenient to express it in the form Y= 
s/(P)* where e = hJa is the dimensionless thickness of the damping layer, and p =I (p,c,)/(p,& 
is the ratio of the acoustic impedances of the damping layer and the surrounding fluid. 

Let us examine the same diffraction problem as above, but without the assumption that the 
pressure is constant in the layer along the radius by considering this quantity to satisfy the 
wave equation both outside and inside the damping layer (the speeds of sound in these regions 
are different). It is here more convenient to change the scale along the r axis so that the 
outer boundary of the damping layer has the equation r* 1, and the surface of the solid 
sphere has the equation r = i --e. Then the first boundary condition of (2.6) is replaced by 
the conditions for the pressures and the normal velocity components on the outer boundary of 
the damping layer to be equal, while a condition that the normal derivative of the pressure is 
zero appears on the sphere surface (the impenetrability condition of a rigid body), 

The Laplace transform pFw of the solution of the problem has the following form for 
r =I: * 

Ps,.w - 2 cm (4 &l+v* (4 pn &OS 4 (2.13) 

C*(s)= --&J/F{ n-t+) ,“:=+“’ 
(4 - In+t/, (4 [i i- 0, (Rt dl 

. 
$&,* (4 - A n+l,* (4) Ii+ D, @I* 41 

D,,(zI,z)= ; 
u* (4 un (4 - yq (21) u* (4 

K *+I,, (a) sm (4 - I,++. (4 en (4 

4 (4 = Al+*/* (z) - 2&+.,, (2). V, (z) = &+I/, (4 - 2zKh+~, (4 

2 = s/v, .zl = (1 - e) 2 

We shall henceforth consider e and pto be small quantities, but such that the quantity 
y is finite. Expanding (2.13) in powers of e to the second order inclusive, we obtain 

p:,lo=ps* -t&R (2.14) 
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where ps* is given by (2.9) and (2.11) for r= 1. Carrying out an inverse Laplace transform 
in (2.14), we obtain, since R (s)has an original, that the solution, taking into account the 
wave in the layer, differs very little from the solution when the wave is ignored for small 

E. However, the solution ignoring the wave is continuous, unlike the solution taking the 
wave into account, and also, being fairly simple, it is very promising for analyzing its 
properties. 

3. A Force Acting on a Sphere. The transform of the dimensionless force Fatting 
on a sphere can be obtained from (2.9)-(2.12) by using the orthogonality of the Legendre poly- 
nomials andthe relationship K.,, = fn/o e-’ (s + 1)/s (F = Fl(adp,)) 

(3.1) 

A (4 = tsS -tl (r + 1) Sp -I- 2 (1 + g) (s + I), g = yv2 = hspp,l(ap,) 

The bar above the F is omitted here and henceforth. Applying the inverse Laplace transform 
to(3.1), we obtain an expression for the force acting on a sphere 

(3.2) 

Here Sk (k = 0, 1, 2) are the roots of the cubic equation A (s) = 0 (generally complex). 
Rejection of the assumption of sphere immobility does not result in any appreciable comp- 

licationof the problem. A term (-~~c~scp dV/dt) is addedonthe right side of boundary condition 
(2.61, and moreover, the following additional condition appears: 

(M and V are the mass and velocity of the sphere respectively). These changes result in the 
same formula for the quantity F as in (3.2), however, the term (2m)-Iis here attached to the 
coefficient g. 

on 

as 

by 
of 

The total momentum communicated to the sphere during diffraction turns out to bedependent 
their elastic properties of the damper 

can be shown using (3.1). 
As an illustration, the properties of expression (3.2) are represented in Figs.1 and 2 

time dependences of the magnitude of the force acting on the sphere for different values 
the parameter y and g when a step wave is incident (6 = 0). 

Fig.1 

LO 

0.5 

0 

-0.5 
0 2.5 5 t Fig.2 
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Graphs of the function F(t) are constructed in Fig.1 assuming g=O, and values of 
y corresponding to the curves are also indicated. 

The non-monotonic dependence of the maximum value of F on the parameter Y characterizing 
the elastic properties of the damper is interesting: as y increases, this value first increases, 
thereby turning out to be higher than the value of the maximum force acting on a rigid sphere, 
and only then decreasing to become less. The effect of exceeding the maximum force acting on 
a sphere covered by a damper as compared with the maximum force acting on a rigid sphere is 

caused by the three-dimensionality of the flow that occurs: it is missing in the one-dimensi- 

onal case /l/. The range of values of v corresponding to the effect described-corresponds to 

a very thin damper for real media (h/a- 10-r). hence it can also be observed without the pres- 
ence.of a damping layer, in particular, because of gas bubbles in the fluid near the sphere, 
or for other reasons. 

The graphs of the function F(t) constructed in Fig.2 correspond to two fixed values of 
y: 0.4 (curves 1,2,3) and 5 (curves 4,5,6) and different values of g: the values m = 0,~ = 

0 correspond to curves 1 and 4; m = 0, v = 0.5to curves 2 and 5, and the dashed curves 3 and 
6 are constructed to illustrate the dependence F(t) for a sphere of finite mass for m = 1, 

v =o. 

4. Approximate computation of the pressure. Since applying the inverse Laplace 
transform involves considerable difficulties even for the first few terms in series (2.12), 
it is better to use an approximate approach as in piston theory/l, 5/, say, which enables a 

simple formula to be obtained for the pressure distribution in the frontal part of the sphere. 

To do this, the derivatives with respect to cp should be omitted in (2.5) and (2.6). The 
solution of the appropriate problem results in the following time dependence of the pressure 

on the sphere surface: 

p= I- chfitt- 
1 ( 

.+ sh j%++j q(tl) , tl= ‘- l;yccoa ‘%, @= 
Y/1-4% Y& 

i= 
Based on (4.1) 

i1/4Y-& v>+ 
(4.1) 

I the time dependences of the pressure at the' stagnation point ((p = 0) 
displayed by the solid lines 1 - 5 in Fig.3 

are 

maximum that always exists (for 
for values of y equal to 0, 0.05, 0.25, 0.4, 1. The 

Y +Oo, 50) is reached at a time t - (2y@) Arth [p/(1 - v)f, 
will be greater, the greater the value of y. The for&ala 

and 

p = 2 (1 - ,-t'V) (4.2) 

is obtained in /l/ for the pressure behind the reflected wave in the case of the one-dimension- 
al problem of wave incidence on a wall covered by a damper. It is natural to expectagreement 
between the Pressures obtained by means of (4.1) and (4.2) at the initial times. They can be 
compared in Fig.3, where the dashed lines correspond to reflection from a flat wall. 

Piston theory maY not be sufficiently accurate for times of the order of one. However, 
the accuracy of (4.1) can be clarified by comparing the time dependence of the force obtained 
from it and, for brevity, is not here referred to the exact dependence (3.2). This ccxmpa.rison 
shows that they agree satisfactorily in the rangeO<t<z of practical interest, when the 
incident wave front intersects the sphere surface /l/. 

t Fig.3 
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